Politicising inequality: The power of ideas
نویسندگان
چکیده
منابع مشابه
romantic education:reading william wordsworths the prelude in the light of the history of ideas
عصر روشنگری زمان شکل گیری ایده های مدرن تربیتی- آموزشی بود اما تاکید بیش از اندازه ی دوشاخه مهم فلسفی زمان یعنی عقل گرایی و حس گرایی بر دقت و وضوح، انسان عصر روشنگری را نسبت به دیگر تواناییهایش نابینا کرده و موجب به وجود آمدن افرادی تک بعدی شد که افتخارعقلانیتشان، تاکید شان بر تجربه فردی، به مبارزه طلبیدن منطق نیاکانشان وافسون زدایی شان از دنیا وتمام آنچه با حواس پنجگانه قابل درک نبوده و یا در ...
analysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولsurvey on the rule of the due & hindering relying on the sheikh ansaris ideas
قاعده مقتضی و مانع در متون فقهی کم و بیش مستند احکام قرار گرفته و مورد مناقشه فقهاء و اصولیین می باشد و مشهور معتقند مقتضی و مانع، قاعده نیست بلکه یکی از مسائل ذیل استصحاب است لذا نگارنده بر آن شد تا پیرامون این قاعده پژوهش جامعی انجام دهد. به عقیده ما مقتضی دارای حیثیت مستقلی است و هر گاه می گوییم مقتضی احراز شد یعنی با ماهیت مستقل خودش محرز گشته و قطعا اقتضاء خود را خواهد داشت مانند نکاح که ...
15 صفحه اولIn Search of Ideas: Technological Innovation and Executive Pay Inequality∗
We develop a general equilibrium model that delivers realistic fluctuations in both the level as well as the dispersion in executive pay as a result of changes in the technology frontier. Our model recognizes that executives add value to the firm not only by participating in production decisions, but also by identifying new investment opportunities. The economic value of these two distinct comp...
متن کاملUnharnessing the power of Schrijver's permanental inequality
Let A ∈ Ωn be doubly-stochastic n × n matrix. Alexander Schrijver proved in 1998 the following remarkable inequality per(Ã) ≥ ∏ 1≤i,j≤n (1−A(i, j)); Ã(i, j) =: A(i, j)(1−A(i, j)), 1 ≤ i, j ≤ n (1) We prove in this paper the following generalization (or just clever reformulation) of (1): For all pairs of n × n matrices (P,Q), where P is nonnegative and Q is doublystochastic log(per(P )) ≥ ∑ 1≤i,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: World Development
سال: 2018
ISSN: 0305-750X
DOI: 10.1016/j.worlddev.2018.06.006